Database Extensions, Page Fragments and Plugins
Presenter: Roger Sprik Updated September 2014 for European PSUG Malta Conference

Released in PowerSchool 7.9

Key Documents on PowerSource:

Database Extensions Visual Walkthrough - ID: 70768

Database Extensions Advanced User Guide for PowerSchool 8.x - ID: 72513

Database Extensions Best Practices - ID: 71545

Database Extension and Custom Field Migration Frequently Asked Questions for PowerSchool
8.x - ID: 72504

Data Dictionary Tables for PowerSchool 8.x - ID: 72521

Overview

Database Extensions is the name for the new method for custom data entry points in
PowerSchool.

It will currently run side-by-side with the old way of doing custom data, but eventually will
completely replace it. It is not required as of 8.0.

Before:

o Users go to System - Custom Fields/Screens

o Only Student, Staff (teachers table), Course and Section fields were available to be
created this way
Only text fields could be created
All data went into one giant custom field that had to be parsed
The only way to do one-to-many custom fields was to use virtual tables which is little
known and very difficult to work with

After:

Users go to System - Page and Data Management - Manage Database Extensions

Users create REAL tables and fields of various data types.

Migration options for legacy custom fields

Many, many more tables can be extended, users can create one-to-many tables and

even independent tables.

Inherent grouping of fields for logical organization.

No more 999 limit!

All tables get some tracking fields: whocreated, whencreated, whomodified,

whenmodified. It won't tell you what changed, but who and when.

o Any extended table can be exported from and imported into with the Data Export and
Import Managers.

o

o

o

https://www.google.com/url?q=https%3A%2F%2Fpowersource.pearsonschoolsystems.com%2Farticle%2F70768&sa=D&sntz=1&usg=AFQjCNEUnVUWbKOKItWo7hQf9amLVCw7mw
https://www.google.com/url?q=https%3A%2F%2Fpowersource.pearsonschoolsystems.com%2Farticle%2F72513&sa=D&sntz=1&usg=AFQjCNF684wA2XlozTHLpC_ZL_uihYMhJA
https://www.google.com/url?q=https%3A%2F%2Fpowersource.pearsonschoolsystems.com%2Farticle%2F71545&sa=D&sntz=1&usg=AFQjCNEmR0ZWVrx9ukhldiOKGplTpFicLQ
https://www.google.com/url?q=https%3A%2F%2Fpowersource.pearsonschoolsystems.com%2Farticle%2F72504&sa=D&sntz=1&usg=AFQjCNFDYGTqLfZ8CMN_DEPpMv4GhAAT2A
https://www.google.com/url?q=https%3A%2F%2Fpowersource.pearsonschoolsystems.com%2Farticle%2F72504&sa=D&sntz=1&usg=AFQjCNFDYGTqLfZ8CMN_DEPpMv4GhAAT2A
https://www.google.com/url?q=https%3A%2F%2Fpowersource.pearsonschoolsystems.com%2Farticle%2F72521&sa=D&sntz=1&usg=AFQjCNHt2Q9LM05N-Uw7XTdi9P9JmZgCzg

The Old Way. With custom fields, all custom data is stored in a single field in the core table. They are

all “Text” types.

Students Table

Last Name Adair

First Name Brandon

DCID 2

ID 5

CUSTOM Medical Notes: Allergic to peanuts

contact 1 email: contactl@email.com
contact 2 email: contactZ@email.com
contact 1 employer: Wal Mart
contact 2 employer: Lanham Law Offices
parent notes: Brandon is only allowed to be
picked up from school on Wednesdays by his

father.

Database Extensions - The New Way. Faster, real tables and fields, multiple data types.

Students Core Table U_Def_Ext_Students | New extended table
“Parent” “Child”
Last Name Adair
First Name | Brandon This table ‘relates” to
the Students table
DCID 2 <-> | StudentsDCID 2
(Primary Key) (Foreign Key)
ID 5 Contactl Email contactl@email.com

Contact2 Email

contact2@email.com

Contactl Employer

Wal Mart

Contact2 Employer

Lanham Law Offices

Medical Notes

Allergic to Peanuts

Custom Field Migration

e Core Custom Fields. The core PowerSchool product has many legacy fields that were never
“real” fields, but were created by the developers as custom fields. These are known as “Core

Fields”.

Activities have traditionally been stored as custom fields.

SuccessNet integration fields were also custom fields.

User Custom Fields are the fields created by customers

mailto:contact1@email.com
mailto:contact2@email.com

e History of options to migrate core custom fields and user custom fields.
o 7.9 First set of core custom fields can be migrated
o 7.10 Second set of core fields can be migrated. User fields can be migrated one at a
time. Activities and SuccessNet fields migrated automatically
o 7.11 User custom fields can be migrated all at once (but you might not want to)

e Core Fields Migration (See Data Dictionary for complete list)
o 1st 59 student core custom fields are moved to a new table called StudentCoreFields
m ACT_Composite/Date/English/Math/Reading/Science, SAT
Emerg_1/2/3_Ptype/Rel
Guardian, Guardian_LN, Guardian_FN, Guardian_MN
Mo/Father_Home_Phone, Mo/Father_Day_Phone, Mo/Father_Employer
PrimaryLanguage, SecondaryLanguage
m PrevStudentID, Family_Rep, Area, Dentist Name, etc
o 2 teacher/user core custom fields are moved to a new table called UsersCoreFields
m DOB
m Gender
e Core Fields 2 Migration (See Data Dictionary for complete list)
o 52 more student custom fields are migrated to the StudentCoreFields table
m Autosend fields

m CRT_ fields
m EC_fields
m [PT_ fields

m afew others.
o 1 course field is moved to the School Course table
m Alt_Course_Number

e User Custom Fields migration - Two ways:

o One-at-a-time. You can migrate an existing custom field from the screen where you
create a new extended field.

o All at once. From System - Page and Data Management - Custom Field Data
Migration.

o Which way is best? All at once is faster, but one at a time gives you the opportunity to
organize your fields into logical groups and a chance to standardize your naming
convention.

e Migrated fields continue to operate the “old” way without changing any existing custom pages,
exports, reports, etc. PowerSchool is programmed to act like migrated fields still exist in the
“old” location, but there is a performance penalty. You will eventually want to use them with the
“‘new” rules.

New fields created AFTER migration must use the new naming and querying rules
Please note the issues with migration of fields that contain more than 4000 characters.

Custom Field Migration is managed from:

System > Page and Data Management > Custom Field Data Migration

Organizational Concepts

It's important to understand the concept of an Extension Group vs an Extension table vs an Extension
Field. A “Group” is a high level organization structure. It's a way to keep your tables and fields
organized by function, such one group for managing Families, and another group for managing
College Applications. You can also choose to have one group for ALL your custom fields. If you plan
on sharing database extensions, you should consider multiple groups. You should choose your names
for groups carefully, keeping in mind that the culture of sharing in the PowerSchool community may
lead to potential naming conflicts.

Remember the Flow
Core Table > Extension Group(s) > Extension Table(s) > Extension Field(s)

Cautionary Notes:

e You cannot delete, change or rename extensions once created. So plan carefully and think
about your users and customizations when naming them.

e For each extension group’s core table, you can only have one 1:1 extended table, but you can
have multiple 1:many tables.

e When you install someone else’s plugin and it contains extensions, they will be added to your
system and the tables and fields cannot be removed, only abandoned.

e When a plugin containing a database extension is installed or modified, before using you must
restart PowerSchool/PowerTeacher and ReportWorks services.

e When you disable a plugin, it won’t be served from CPM, but there is no way to tell in CPM if a
custom page is associated with a plugin.
ReportWorks will show extended fields, but must be restarted first.
I's not obvious, but you can have more than one core table per extension group... just select
the core table and then pick an existing extension group in Step 2.

e The Database Extension wizard suggests group names like U_Students_Extension and table
names like U_DEF_EXT_STUDENTS --- you DO NOT have to use those names, you might
want to use names that make sense for your application.

Creating Database Extensions
There are more complete instructions in the PowerSource documents, these are the basics.

System > Page and Data Management > Manage Database Extensions

There are 4 steps to creating a database extension

Step 1 - Choose the core table that will be extended. You can choose Basic or Advanced Extension.
The Basic option will automatically select default options for steps 2 and 3, bringing the user directly to
step 4.

- Step 1: Choose Functional Area
Choose the database table you want to extend, or choose "Other” to see a longer list of PowerSchool tables or to add an independent table.
Choose the Database Table to Extend Students

Choose Workflow Type (=) Basic Extension - Add fields to the default extension
Advanced Extension - Create and manage database extensions, tables
and fields

Step 2 - Choose or add a database extension group. The database extension group is simply a name
given to a group of database extended tables. Many users choose to use a single extension group for
all custom fields. Others choose to create different groups to compartmentalize data (i.e.
demographic data and contact data).

U_Students_Extension is the default extension group when extending the Students table. This is the
option that will be used if the Basic Extension type is selected in step 1.

= Step 2: Choose or Add New Database Extension Group for Students
Choose an existing dalabase exiensson group 1or e selecied funclional anea, oF chick “AGd™ 1o creale a new datlabase axansion group

Mole hal a néw axiension group & auttmabcally prafimed with LI_m the tithe

® View only database extensssn groups for the aement funclional area (Rectimimended)

‘View all user crealed database extenson groups

=
Extension Name Date Created Last Modified Status. Edit Delete
U_STUDENTSLUSERFIELDS 0742014 0742014 Existing
. U_STUDENTS_EXTENSION oFM2o4 oFrMa0n4 Existing
U_STUDENT_FEE 0702014 0702014 Existing
U_STUDENT_FEE_TRANSACTION 07014 DTNa2014 Existing

Step 3 - Choose or add a database table. Each extension group can contain multiple tables. There
are two types of tables.
e One-to-One tables hold data that can be defined only once for a student. These are the
tables that will hold new or migrated custom fields.
e One-to-Many tables can have multiple records for a single student. Examples of these types
of tables in core PowerSchool include CC, StoredGrades, and Log

U_Def_Ext_Students is the default extension table when extending the Students table. This is the
option that will be used if the Basic Extension type is selected in step 1.

~ Step 3: Choose or Add New Database Extension Table for U_Students_Extension

Choose a table to work with, or click "Add" to add a new table.
Then click "Next™.

Extension Table Name Table Type Description Date Created LastModified Status Edit Delete
@ |U_DEF_EXT_STUDENTS One-to-one 9/20/2014 9/20/2014 Pending =

Step 4 - Create new field for the selected table. Here the user can create new fields. When the Add
button is clicked, the Add Field dialog will appear.

- Step 4. Create Mew Fields for Database Extension Table: U_DEF_EXT_STUDENTS

hck “Ackd to add new Faalds
Tha databasa extension s not saved unbl you chck =Sulbmt™

Fiald Narma Data Type Ciafault Valus Description Status Edit Daelete

LETTERED [Student mamod o school Letler for parlicgation in Alhlelics Exsling

Add Field 8

Field Description
Name] Name Enter the field name as it will appear in PowerSchool.
e — Type Select the filed data type from the pop-up menu:
Length 40 .
Default Value « String: Fixed-length character string. Strings in excess
Migrate Data From | . of 4000 characters will be truncated.
Description - Integer: A number that can be written without a

fractional or decimal component.

+ Date: A point-in-time value.

4 + Double: An approximate representation of a decimal
[value.
m « Boolean: Data has two values (1=true and O=false).

« CLOB: (Character Large Object) data stored in a
separate location referenced by the table.

+ BLOB: (Binary Large Object) collection of binary data
stored as a single entity.

Length Enter the maximum length of data that can be entered in the field.
Default Value Enter the default value for the field.

Migrate Data From Choose a legacy custom field in order to migrate data from the
selected field to your database extension field. The default Type is
set to String and the default Length is set to 4000 automatically. This
option is unavailable if there are no existing legacy custom fields.

Description Enter a brief description of the field.

Important notes about field creation

e Once afield has been created, it cannot be modified. Take time to consider names,
data-types, and lengths carefully before submission.

e |eave the 'Migrate Data From' dropdown empty to create a new field.

e |f migrating a new extended field will be created and all data from the custom field will be
migrated into the newly-defined extended field.

e Fields can be renamed when migrating. PowerSchool maps previous names to the new
extended names to ensure that no custom pages or queries will break.

Using One-to-One Extensions

e Searching, exports, list students (wherever the PS application itself asks you for a “fieldname”)
o ExtensionGroupName.Field _Name.
o Example: U_Students_Extension.DistrictlD

e Reports that use DATs (wherever you normally put ~(fieldname))
o ~(ExtensionGroupName.Field_Name)
o Example:~(U_Students_Extension.DistrictID)

e HTML pages
o [PrimaryTable.ExtensionsGroupName]FieldName
o Example: [Students.U_Students_Extension]DistrictiD

e SQL Queries.

o The extended database tables link on {CORETABLE}DCID
SELECT * FROM
CoreTable
LEFT JOIN ExtendedTable ON CoreTable.DCID = ExtendedTable.StudentsDCID

o EXAMPLE:

SELECT
s.lastfirst, s.grade_level, s2.districtid

FROM
students s
LEFT JOIN U_DEF_EXT_STUDENTS s2 ON s.dcid = s2.studentsdcid

WHERE
s.enroll_status=0 AND s.grade_level=12 AND s.schoolid = 100

One-to-Many Extension Tables
A one-to-many extended table allows you to have multiple records that are tied back to a single parent
record. For example, multiple college applications for a single student.

e To work with one-to-many tables you use the tlist_child tag. This tag will create a table, so use
it outside of any other tables, but still within a standard type page that has a form tag with the
usual submit button and associated hidden inputs.

~[tlist_child:<CoreTableName>.<ExtensionGroup>.<ExtensionTable>;displaycols:< List of
Fields>;fieldNames:<List of Column Headers>;type:<FormatName>]

Example:

~[tlist_child:Students.U_CollegeApp.U_Applications;displaycols:Institution,Request_Date,Status;fieldNam
es:Institution,Request Date,Status;type:html]

e SQL query example for a one-to-many table.

SELECT

s.lastfirst,

app.institution,

app.request_date,

app.status
FROM

students s

LEFT JOIN U_Applications app ON s.dcid = app.studentsdcid
WHERE

sid=2

Independent (Standalone) Extension Tables
Creates a table that is not associated with any existing PowerSchool table. An example might be a list
of college institutions.

e To work with independent tables use the tlist_standalone tag. It works much like the tlist_child
tag.
~[tlist_standalone:<ExtensionGroup>.<ExtensionTable>;displaycols:<List of Fields>;fieldNames:<List of
Column Headers>;type:<FormatName>]

Example:
~[tlist_standalone:U_CollegeApp.U_Institutions;displaycols:Institution_Name,Phone,URL;fieldNames:Instit
ution Name,Phone Number,Web Address;type:html]

Example SQL Query for Independent table:
SELECT * FROM U_Institutions

Even more advanced?

Refer to the Advanced User Guide for Database Extensions for special formatting of tlist_child
and tlist_standalone tags.

The forums are starting to discuss even more advanced applications of extended tables for
when tlist_child and tlist_standalone aren’t sufficient.

Page Fragments

Page fragments are ways to customize any existing PowerSchool page or even new pages without
customizing the page itself. Rather, you create a snippet of code that is inserted dynamically into the
existing page via an “insertion point”, a special location in the source code of a page.

With insertion points, the original source page does not have to be customized in order to
add new content to that page. This can help dramatically cut down on the number of custom
pages that need to be created and subsequently updated when a new version of PowerSchool
is released.

You can physically move fragments around on the page using client-side DOM manipulation
via standardized metadata.

You can insert a page fragment into a wildcard, thus being able to customize multiple pages at
once - wherever that wildcard is used.

A page fragment is simply a snippet of content to be added to a target page. It could be
something simple like the following example:

<p>Hello world! I'm an auto-inserted page fragment.</p>

Or, a page fragment could be a complex combination of HTML code and jQuery scripts. Because
page fragments will be inserted in to existing PowerSchool HTML pages they do not require any of the
standards HTML <head>, <body>, or other tags. The main page already contains those tags.

The naming of your page fragment is the key. Always save your page fragments to the same
directory where the source page or wildcard exists.

Name_of file (without the “.html”) +
.name_for_page_fragment (whatever you want to name it) +
.insertion point (a common insertion point is “content.footer”) +
Axt

Example: home.Emergency_Numbers.content.footer.txt

Example of jQuery page fragment for the modifydata DistrictID

<script>
$Jj (function () {
$j("table tr").eq(0).after ('<tr>\
<td class="bold">District ID</td>\
<td><input type="text" name="[Students.U Students Extension]DistrictID" value=""></td>\
</tr>\
<tr>"');

1)
</script>

Note: If a field has validation, PowerSchool can add additional characters beyond your control that can
break the method above. Here’s another example using the following pattern:
e Build the content you want to add in a hidden element (such as a table).
e Use jQuery to move the element to your desired location
e Delete the hidden table

Example that adds the legacy “Family_ldent” field to the “Modify Data” screen.
(For a more complete example that also includes a function to automatically select the next available
FamilyID see the “Family Management” page at psugcal.org)

Filename: modifydata.familyid.content.footer.txt

<!-- create a hidden table with added rows -->
<table id="familyidhiddentable" style="display: none;">
<tr id="familyidrow">
<td class="bold">Family ID</td>
<td><input type="text" id="familyidfield" name="[Students]Family Ident" value=""></td>
</tr>

</table>

<!-- use jQuery to move the inserted rows to target table and remove the hidden row -->
<script>

$j (function () {

/* place the family id row at the beginning of the table */
$j("table:first") .prepend ($j ("#familyidrow")) ;

/* remove the hidden table */
$j("#familyidhiddentable") .remove () ;

1)
</script>

http://www.google.com/url?q=http%3A%2F%2Fpsugcal.wikispaces.com%2FFamily%2BManagement&sa=D&sntz=1&usg=AFQjCNHvRlA6xWxLtDZLVBXMRZ3zH6dg8Q

Database Extension Plugins

PowerSchool provides an exporting function that builds a complete plugin package containing
database extensions and custom pages/fragments in one file. This plugin can then be easily imported
into other PowerSchool servers in one simple step.

You work with Plugins from System - System Settings - Plugin Management Dashboard

Plugin advantages:

An improvement over CPM “Import” ability

Easy to share

Can import files that CPM cannot import, like image and PDF files.

Complete “package” of database extensions plus pages/fragments. Files will show up

in CPM.

e Can be disabled with one click. All the files will still be there and even show in CPM,
but will not be served.

e The plugin can be deleted which deletes the files/pages. However, extended tables
and fields CANNOT be deleted.

Many of the popular customizations in the community have already been re-written as plugins and are
now very easy to install.

A plugin does not have to contain database extensions, many just have custom pages and those won't
add any extended tables to your server.

Creating Plugins
For more on how to create/export plugins and other information, please refer to the “Advanced User
Guide for Database Extensions”. The unpublished link to create a plugin is:

https://<server>/admin/customization/CreatePackagePage.action

Note: The database extensions exist in the “user_schema_root” folder and end in .xml.

Appendix

Page Fragment Examples

Learning to use jQuery/Javascript to move content around on a web page is important for creating
good page fragments. Here are some examples.

roomedit.appletvudid.content.footer.txt

This example is used at Valley. We use a Mobile Device Managment solution that include AppleTV
management. Our exports from PowerSchool include the UDIDs for our AppleTVs. We created an

Extension Group named “U_JAMF” that extended the Rooms table. This example uses “append” to
add another row to the bottom of the table.

<!-- Add Apple TV UDID to room edit. Note escapes for line breaks -->
<script>

$j (function () {

$j('table') .append ('\
<tr>\

<td class="bold">Apple TV UDIDs (Max 3 comma separated)</td>\
<td>\

<input type="text" name="[Room.U JAMF]apple tv udids" value="" size=45 maxlength=128>\
</td>\

</tr>\
')

1)
</script>

Add/Edit Room

Option Value

Room Number (3]

Room Description Rogers g

Department VCMS

Building

House

Room Facilities

=

Reoom Maximum 30

Apple TV UDIDs (Max 3 comma separated) 3850d19133aadfdf3eal553a0d21096142095¢f

functions.lockers_resetclasscounts.content.footer.txt

Source: Michael Moore on the PowerSource forums. This example uses a method of building up the html content
into a variable, then copies the contents of that variable “html” into the row “closest” to the “Incidents” link in the
Special Functions screen. What's of note here is not the actual html content, but the method used.

<script>

var html = '~[if.is.a.school]’;

html += '<tr class="~[evenoddrow]">";

html += '<td>Locker Management</td>';

html += '<td>Mass assign and other related functions.</td>';

html += '</tr>';

html += '[/if]"';

html += '<tr class="~[evenoddrow]">";

html += '<td>Reset Class Counts</td>"';

html += '<td>Updates section student enrollment counts.</td>"';

html += '</tr>"';

$j (" [href”='/admin/incidents/home.html']") .closest ("tr").after (html);
</script>

modifydata.districtid.content.footer.txt

In this example we're adding an extension DistrictID field to the “Modify Info” screen and inserting it
after the 4th row (remember numbering starts at 0).

<!-- create a hidden table with added rows, use jQuery to move the inserted rows to
target table -->

<table id="districtidhiddentable" style="display: none;">

<tr id="districtidrow">

<td class="bold">District ID</td>
<td>
<input type="text" name="[Students.U Students Extension]DistrictID" value="">
</td>
</tr>
</table>
<script>
$Jj (function () {

/* place the district id row at after the 4th row */
$j("table:first tr").eq(3).after (S ("#districtidrow")) ;

/* remove the hidden table */
$j ("#districtidhiddentable") .remove () ;

1)
</script>

more2.additional_links.leftnav.footer.txt

John Dunleavy on the forums posted this solution he used to add more links to the left nav area for a
student (the more2.html page)

<!-- create new links and insert in more2 menu, use jQuery to place the inserted
rows in target row. Many thanks to Roger Sprik & Matt Freund. -->
<script>

$j (function () {

/* place the div id row at respective row */
$j("table:first
br") .eqg(0) .after('~[1if.~(studentscreenaccess;generaldemographics.html)=1]Accounts Information
[/if]"');
$j("table:first
br") .eq(4) .after('~[1if.~(studentscreenaccess;generaldemographics.html)=1]Demographics View
[/if]"');
$j("table:first
br").eq(8).after('~[if.~(studentscreenaccess;health/home_health.html)=1]Medication
[/1i
£1')
$j("table:first br").eq(13).after('~[if.~ (studentscreenaccess;state.html)=1]13-14 Registration
[/if]");

1)

</script>
Quick Lookup
Print A Report
Switch Student C.H0
& List (38) = I modifydata.html
- modscheddropclass.html
Information - more2.additional_links.lefinav.foote

CrEr TS mare2.html
. Accounts Information "
Addresses

Custom Screens
Demographics
~_~Demographics View
Emergency/Medical
Family

Health

— _-Medication

Modify Info

Other Information
Student Email

Parents

~—— _13-14 Registration Info
Photo

State/Province - IL
Transportation

o

Simpler Method to add links to the left nav (more2.html)
Jason Spring on the forums suggests this may be the simplest method to add more links to the left navigation:

<script>

S (" [href*="'cumulative.html']") .before('MyPage Text Label
');
</script>

reporttabs.fvsd_tab.report.tabs.txt

Nathan Jones suggested this method of building an “HTML Template” into a non-valid
type="text/template” script so that it’s ignored by the browser. Then use jQuery to copy it into place.
Here we are adding the sqlReports 4 tab as the LEFT most tab on the System Reports page. (the
sqlReports4 plugin already adds it to the right side, so you probably won’t actually use this specific
example, but it illustrates a good method and the fact that reporttabs has an insertion point).

<script type="text/template" id="sglreports-tab-template">

<!-- sglReports 4 begin -->
<1li class="~[if.~[gpv:repTypel=sglReportsd4]selected[/if]">
<a

href="~[if.~[gpv:repType]l=sglReportsd]#[else]/admin/sglReportsd/home.html?frn=~ (us
erfrn) [/if]">ICSDReports

</1li>

<!-- sglReports 4 end -->
</script>
<script>

var template = $j('#sglreports-tab-template') .html () ;
$j('.tabs'");
select.prepend (template) ;

var select =

</script>

Advanced Example: Add Prev Week and Next Week Buttons to the Bell Schedule screen
This advanced example was presented by Brian Andle at PSUG Vegas 2013. The presentation and
finished fragment can be found on PowerSource at this link:
https://powersource.pearsonschoolsystems.com/exchange/view.action?download.id=637

Rinks, John
Cc28
10:15 AM - 11:00 AM

Rinks, John
ca8
10:15 AM - 11:00 AM

Study Hall A

11:00 AM

Study Hall A

Fimain Rlianla

Study Hall A

PR

Davis, Nicole
C25

c28
09:54 AM - 11:17 AM

[Next Week 1
Monday Tuesday Wednesday Thursday Friday
09/15/2014 09/16/2014 09/17/2014 09/18/2014 09/19/2014
Advanced Math Advanced Math Chapel Group Advanced Math Advanced Math
Kouwe, Megan Kouwe, Megan Winters, Nancy Kouwe, Megan Kouwe, Megan
B22 B22 A0S B22 B22
08:15 AM - 09:10 AM 08:15 AM - 09:10 AM 08:15 AM - 09:00 AM 08:15 AM - 09:30 AM |08:15 AM - 09:10 AM
09:00 AM
Study Hall A Study Hall A i:d?H?gt) Study Hall A
Admiraal, Sheri Admiraal, Sheri " '1"”"”3 Dl Admiraal, Sheri
Al e 09:05 AM - 10:33 AM ik
09:15 AM - 10:00 AM 09:15 AM - 10:00 AM : ’ e —— 09:15 AM - 10:00 AM
10:00 AM Rinks, John
Economics Economics Economics

Rinks, John
C28
10:15 AM - 11:00 AM

Study Hall A

I o i

https://www.google.com/url?q=https%3A%2F%2Fpowersource.pearsonschoolsystems.com%2Fexchange%2Fview.action%3Fdownload.id%3D637&sa=D&sntz=1&usg=AFQjCNE5UlSlroIxjwgda2U9cKa4VJF3Jw

