
PSUG National Information Exchange

Users helping users

Basic SQL

Dean Dahlvang

Proctor Public Schools

Proctor, MN

About Dean

• Dean Dahlvang
(ddahlvan@proctor.k12.mn.us)

• Director of Administrative Technology for the
Proctor Public Schools (just outside of Duluth,
Minnesota at the tip of Lake Superior).

• PowerSchool Admin for 10 years, PowerSchool
contracted state reporting programmer for the
last 5 years.

• I enjoy winter camping in the BWCA.

Basic SQL

What is SQL?

• SQL stands for Structured Query Language

• It is a standardized programming language
that allows for quick access to a relational
database management system (rdbms).

• S Q L or “Sequel” can update, delete, create
and drop data…but it is best known for it’s
ability to SELECT data.

Knowing Your Data

• Before we can use SQL, it is important to have
a good idea of what kind of data we have.

• Data Models or Entity Relations Diagrams
refer to how data exists in a rdbms.

• Inside a database, data lives in tables. Inside
tables, are rows (or records) that contain
columns (or fields).

Tables and Columns and Rows Oh My!

• Tables – Students, Reenrollments, CC,
Teachers

• Columns – StudentId, Course_Name,
Grade_Level

• Rows – Exist with a table that contain specific
data inside its columns.

• PowerSource has a data dictionary…just
search for it.

How Do We Get The Data?

• SQL Developer is a tool (query browser or
query analyzer) that comes with Oracle…the
database (rdbms) that holds the PowerSchool
data.

• Launch SQL Developer

Hello World!

• Two basics in the SELECT statement – SELECT
and FROM

• SELECT columns FROM tables

• SELECT lastfirst, email_addr FROM teachers

• See why it is important to know your data?

• What else can we select from the teachers
table?

Try Some!

• SELECT lastfirst, grade_level, gender FROM
students

• SELECT course_number, course_name FROM
courses

• SELECT yearid, name, schoolid FROM terms

• SELECT * FROM teachers

Filtering

• We can add a clause (no, not Santa) to our
SELECT statement that will filter the data.

• WHERE clause allows us to specify that certain
criteria are met for the data returned from our
database

• SELECT lastfirst, grade_level FROM students
WHERE enroll_status=0

Queries…Now with Extra Filtering!

• SELECT course_number, course_name FROM
courses WHERE schoolid=100

• SELECT yearid, name, schoolid FROM terms
WHERE portion=1

• SELECT * FROM teachers WHERE status=1

Where Clause Wonderment

• The Where clause can get pretty fancy.
Beyond normal “equality”, it can do a number
of logical operations and functions.

• SELECT lastfirst, grade_level FROM students WHERE
enroll_status=0 and grade_level=12

• …WHERE enroll_status=0 and grade_level in (9,12)

• …WHERE enroll_status=0 and last_name=‘Smith’

• …WHERE enroll_status=0 and in (‘Jones’,’Smith’)

• …WHERE enroll_status=0 and first_name like ‘Jo%’

Order in the Court

• The Order By clause of a Select statement will
allow for the sorting of data. Multiple fields in
either direction can be sorted

• SELECT lastfirst, grade_level FROM students
WHERE enroll_status=0 …

• …ORDER BY grade_level

• …ORDER BY grade_level DESC

• …ORDER BY grade_level DESC, lastfirst ASC

Beyond a Single Table

• It is important to remember how tables and
data relate within the database. Multiple
tables can be accessed within a single Select
statement as long as there is a common
relationship between the tables.

• The heinous Cartesian Product (insert sneer)

• Remember the importance of the data model

The Join

• The Join clause allows us to take advantage of
pulling data from multiple tables (assuming
they have a relationship.)

• Look at two related tables:
– Students

– Schools

– How are these tables related? Students.id vs
Schools.studentid?

– A quick word about convention

The Join Example

• SELECT lastfirst, grade_level, schoolid, abbreviation
FROM students
INNER JOIN schools ON students.schoolid = schools.school_number
WHERE enroll_status=0
ORDER BY lastfirst

• What happens if my tables share the same column name? Our fix is to
ALIAS the tables and columns. Lets try this again:

• SELECT s.lastfirst, s.grade_level, s.schoolid, sch.abbreviation
FROM students s
INNER JOIN schools sch ON s.schoolid = sch.school_number
WHERE s.enroll_status=0
ORDER BY s.lastfirst

Flyers and Bombers

• This example goes well beyond a lesson in
World War II History. Let’s talk about the
students who failed classes first semester!

• Suppose we want a list of students and the
classes they failed for first semester…what is
our approach?

• Table or Tables? If more than one, how do
they relate?

Flyers and Bombers part 2

• SELECT * FROM storedgrades sg WHERE
sg.termid=2001 and sg.grade=‘F’

• If we limit our column selection, what should
they be?

• Studentid isn’t easy to use, how do we add
the student’s name?

Flyers and Bombers part 3

• SELECT s.lastfirst, sg.storecode, sg.grade,
sg.absences, sg.tardies, sg.course_name
FROM storedgrades sg INNER JOIN students s
ON s.id=sg.studentid WHERE sg.termid=2001
AND sg.grade='F’ ORDER BY s.lastfirst

Flyers and Bombers part 4

• Include number of students in the classes by
joining the Sections table

• SELECT s.lastfirst, sg.storecode, sg.grade, sg.absences,
sg.tardies, sg.course_name, sec.no_of_students FROM
storedgrades sg INNER JOIN students s ON s.id=sg.studentid
INNER JOIN sections sec ON sec.id=sg.sectionid WHERE
sg.termid=2001 AND sg.grade='F‘ ORDER BY s.lastfirst

Let’s Look at a Matt Example

• Matt Freund has a great example:

• SELECT att_date, schoolid, attendance_codeid
FROM attendance
WHERE yearid=20 and
att_mode_code='ATT_ModeMeeting' and
studentid=3
ORDER BY att_date

Matt Example part 2

• To make it more meaningful, we can join the schools and
attendance_code tables to the attendance table and replace
schoolid with abbreviation, and attendance_codeid with
description:

• SELECT att.att_date, sch.abbreviation, ac.description
FROM attendance att
INNER JOIN schools sch on att.schoolid =
sch.school_number
INNER JOIN attendance_code ac ON
att.attendance_codeid = ac.id
WHERE att.yearid=20 and
att.att_mode_code='ATT_ModeMeeting' and
att.studentid=3
ORDER BY att.att_date

Matt Example part 3

• Let’s add one more item to the output – the course name. Adding the
course name gives a good example of the power of SQL. The course name
is held in the courses table, however, there is no connection between the
attendance and courses tables. But there is a connection between
attendance and the CC table, so we can join those two, and there’s a
connection between CC and courses, so we can join those two, and then
pull information from the courses table:

Matt Example part 3 Code

• SELECT att.att_date, sch.abbreviation, ac.description, c.course_name
FROM attendance att
INNER JOIN schools sch ON att.schoolid = sch.school_number
INNER JOIN attendance_code ac ON att.attendance_codeid = ac.id
INNER JOIN cc cc ON att.ccid = cc.id
INNER JOIN courses c on cc.course_number = c.course_number
WHERE att.yearid=20 and att.att_mode_code='ATT_ModeMeeting' and
att.studentid=3
ORDER BY att.att_date

• If the date looks a little fishy, it can be reformatted to a string:
– To_char(att.att_date,’MM/DD/YYYY’)

Using the Queries – Tlist_sql

• After creating a query, how do you make it
available for others to use? Aha! Tlist_sql

• Tlist_sql will allow us to embed a sql select
statement inside a web table.

• Here is a simple staff directory:

– SELECT t.lastfirst, t.email_addr, t.school_phone
FROM teachers t WHERE schoolid=100 AND
status=1

Tlist_sql Sample Code

<table border="0" cellspacing="0" cellpadding="4" width="100%">
<tr>
<td class="bold">Name</td>
<td class="bold">Email</td>
<td class="bold">Phone</td>
</tr>
<tr>
~[tlist_sql;SELECT t.lastfirst, t.email_addr, t.school_phone FROM teachers t WHERE

schoolid=100 AND status=1;nonemessage=No courses found.]
<td>~(t.lastfirst)</td>
<td>~(t.email_addr)</td>
<td>~(t.school_phone)</td>
</tr>
[/tlist_sql]
</table>

Using the Queries - sqlReports

• sqlReports is a simple way of creating sql queries
inside of PowerSchool without the need to have a
traditional sql client and odbc access. Both of
those things definitely help however.

• It allows you to create queries that are available
to end users to execute.

• It is like a fancy List Students function only you
can query any table or view, save the query for
repeated use.

• sqlReports can be downloaded from
powerdatasolutions.org

Some Aggregate Functions

• Quick examples of some aggregate functions

• Distinct
– SELECT DISTINCT city FROM students

• Count
– SELECT city, count(*) FROM students GROUP BY

city ORDER BY city

• Sum
– SELECT grade_level, sum(balance1) FROM

students GROUP BY grade_level

Questions?

