
PowerSchool API
A Real-World Example

Valley Christian Schools

Presented at PSUGCAL, October 16, 2015



LIBRO

• LIBRO – Spanish for “book”

• Lightly Integrated Bookstore Resources Organizer

• Web-based application.

• Replaces a custom Point-of-Sale, DOS-based 
application; unsupported.

• Written in PHP/MySQL (w/ jQuery) on your typical 
LAMP stack with SSL Cert installed.



PowerSchool API - PowerQueries

• API - Application Programming Interface, allows one 
program to access functions and resources on 
another

• LIBRO uses the API to access information in 
PowerSchool

• PowerQuery – a defined SQL statement (SELECT) 
made available to the API

• LIBRO needs data across multiple related tables
• With the traditional API, a combination of several API calls

• With PowerQueries, it’s one API call



Steps to Utilizing the API

• Decide what data you need

• Write and test your SQL statement
• using SQL developer

• Create the PowerQuery as a Plug-In

• Install the Plug-In

• Test the PowerQuery using a REST client
• such as Advanced Rest Client, or node.js

• Incorporate the PowerQuery into the application



SQL Statement: Multiple Tables



SQL Statement: Single Table



Create the Plug-In Files





Install the Plug-In

• Package the XML files into a ZIP file.
• Root contains the “plugin.xml” file

• Subfolder named “queries_root” contains the XML file 
that defines the PowerQueries (libro.queries.xml)

• In PowerSchool (System->System Settings->PlugIn
Management Configuration), install the plug-in.

• After it installs, check the box to enable it.

• Open the PlugIn and get info needed:
• the Client ID

• the Client Secret.



Testing your PowerQuery

• Use a REST client
• Postman

• Advanced Rest Client

• node.js – command line Javascript processor

• Get the PlugIn Client ID and Secret
• Created when the PlugIn is enabled

• Create a base64encoded string with the ID and Secret
• “<ClientID>:<ClientSecret>”

• Use encoder in your development environment or 
www.base64encoder.org

http://www.base64encoder.org/


Request OAuth Token

URL:

https://<ps_server>/oauth/access_token

Request Type:

POST

Headers:

Authorization Basic NzE2 … hiOA==

Content:

grant_type=client_credentials



Access the PowerQuery
URL:

https://<ps_server>/ws/schema/query/org.psugcal.ps8.school.hs_students

Request Type:
POST

Headers:
Authorization Bearer 420035ea-6a1f-461c-ae33-83f270b8f352

Accept application/json

Content:
{ "lastnumber": 0 }



Results



Using the PowerQuery

• Where can PowerQueries be used?
• Directly in custom pages as data objects for dynamic 

elements (AngularJS Controllers)
• Automated exports using command line tools (node.js)
• Resources for data visualization tools
• Data Export Manager in PowerSchool

• In 9.1 this can be scheduled!
• Custom applications (like LIBRO)

• Development Environments
• PHP/MySQL
• ASP / Visual Studio
• xCode (iOS Apps)





Hands On Time

• Create base64 encoded string

• Getting the Bearer token

• Get student info (API v.1.0)

• Get student info with extensions 

• INSERT a new student record 

• UPDATE a student’s name

• Call a PowerQuery



Additional Resources

• PowerSchool Developer
• http://support.powerschool.com/developer

• Base64 Encoder
• http://www.base64encode.org
• Do not use this for plugins on your production server.

• Rest Clients
• node.js – http://nodejs.org (command-line)
• Advanced Rest Client – http:// 

http://support.powerschool.com/developer
http://www.base64encode.org/
http://nodejs.org/

