
PowerSchool Customization
#2 - Coding Basics

HTML, CSS, LTK, PSHTML and Tools

About the Trainer
● Roger Sprik

Technology Director
rsprik@vcschools.org

● Valley Christian Schools
Southern California

● 1200+ students Preschool
- 12
PowerSchool since 2003

mailto:rsprik@vcschools.org

Localization (LTK = Language Translation Toolkit)

English -> Spanish
Father -> Padre

English -> English
Father -> Parent 1

LTK Documentation

● search the built-in help: "Localization" or "Translation"
● PowerSource KB 74801 (v9)
● The Administrator User Guide combines many guides into

one large document. (over 2,700 pages!!!)
○ v11 https://support.powerschool.com/article/79085 (Page 894)
○ v12 https://support.powerschool.com/article/80644 (Page 856)

https://support.powerschool.com/article/79085
https://support.powerschool.com/article/80644

Enabling Page Translation and Security

● Enable Individual Page Translation
○ System – Page and Data Management – Localize

PowerSchool – Settings tab

● Group Security
○ Enable the Language Translator checkbox
○ Some issues with using roles, stick with Group

Security

Translating in PowerTeacher & Parent/Student Portal

● Teachers portal
○ login with a teacher account with appropriate group

security

● Parent/Student Portal
○ add /public/home.html?translator=true

○ Must have a parent account AND admin account with
translator permissions to do this

Translating Parent/Student Portal
/public/home.html?translator=true

Admin account
username;password

Must have a
parent account

Enter the
alternate text.
Preserve any
html, spacing,
parameters, etc.

Use Search to
easier find
text, or sort
the columns

Submit to
save
changes

Translation Hints:

finds instances of
this exact default
text that have
been translated
before, and gives
you the option to
choose them.

Copy and Add:
copies a
translation to all
the other rows in
the grid with the
same default text

Leaving or changing to blank will
revert to default text

Useful English Translations

● Admin Home
○ Browse Parents -> Browse Parent Accounts
○ Staff -> Employees

● Student left menu
○ Family -> Siblings
○ Cumulative Info -> GPA/Credit Info

● PK3/PK4 Grade Level labels on Start Page
○ must translate in both Text AND Data areas

● Parent/Student Portal
○ Parent Portal Account Creation labels/text
○ Class Registration -> Course Requests

● Silliness!

Customization
Tools

Before version 12.1
Start>PS Administrator>Custom Pages
● Separate portal requiring separate account

12.1 and later
Start>System>Page and Data Management>Custom Page Management
● Within admin portal, no separate account required.
● Must setup permissions

NOT a folder! CPM stores custom
pages in the database and there
is a web interface for working
with them.

CPM
(Custom Page Management)

CPM

CPM

● "What's New in PowerSchool 12.1" on
PowerSource at https://support.powerschool.com/
exchange/view.action?download.id=958

● Presented on the PowerSchool Insider
Episode 54

The "What's New in PowerSchool
12.1" presentation has
screenshots of how to enable
the new CPM

https://support.powerschool.com/exchange/view.action?download.id=958
https://support.powerschool.com/exchange/view.action?download.id=958

OLD

CPM Alternative
A great alternative CPM editor
created by a power user:
"Blue Steel CPM"
(Exchange ID 749)
- Upload multiple files
- Search for files
- Filter by plugin names

Dissecting a PowerSchool Page

Special Page extensions

.htmlr
Render the page in the browser but do not process special PowerSchool tags.

.htmlt
View the unrendered (server-side) page code in the browser window

Right-click (Windows) or Control-click (Mac) on a
PowerSchool page and choose "Inspect" or "View Page Source"
to see the rendered (client-side) code.

Tip: Student pages are in
"frames". To use these special
extensions right-click
(ctrl-click) on the link to them
and "Open link in new tab"

Additional Tools

A proper text editor

● Notepad++ for Windows -
https://notepad-plus-plus.org/

● BBEdit for Mac -
https://www.barebones.com/products/bbedit/

https://notepad-plus-plus.org/
https://www.barebones.com/products/bbedit/

Learning Resources

● CPM and Blue Steel CPM have PS templates
● W3Schools

○ https://www.w3schools.com/
● UI Examples - PowerSchool's UI Demo Page

○ /admin/ui_examples/home.html
● HTML - CSS - JS: The Client-Side Of The Web

○ https://html-css-js.com/
● PowerSchool HTML/CSS/JS Fiddle

○ https://jsfiddle.net/aplarsen/vtunbs8s/
● Inspect PowerSchool pages (view source or "inspect")

https://www.w3schools.com/
https://html-css-js.com/
https://jsfiddle.net/aplarsen/vtunbs8s/

More Reference

● PSHTML Developer site
https://support.powerschool.com/developer/

● Eric Schaitel's Customization Documentation
https://support.powerschool.com/exchange/view.action?download.id=772

● The PowerSchool User Community
○ PowerSource Forum: https://support.powerschool.com/forums/main.action
○ PSUG Group: https://groups.io/g/PSUG

https://support.powerschool.com/developer/
https://support.powerschool.com/exchange/view.action?download.id=772
https://support.powerschool.com/forums/main.action
https://groups.io/g/PSUG

Shared Customizations
● PSUG California

○ https://www.psugcal.org/

● PowerDataSolutions
○ https://powerdatasolutions.org/

● PowerSource Exchange
○ https://support.powerschool.com/exchange/main.action

● Aurora Educational Technology
○ https://auroraedtech.com/

● Marcia Brenner Associates
○ https://mba-link.com/

https://www.psugcal.org/
https://powerdatasolutions.org/
https://support.powerschool.com/exchange/main.action
https://auroraedtech.com/
https://mba-link.com/

The Languages of Customization

HTML CSS

JavaScript/JQuery

PSHTML

SQL Angular

HTML

What is HTML?

● HyperText Markup Language
● Developed in 1990s
● Used to create elements that will be

interpreted visually by a web browser

W3C Standards
Most browsers generally comply
with the World Wide Web Consortium
(W3C standards)

?
Source: https://en.wikipedia.org/wiki/Browser_wars

Browser Market Share

Source: https://en.wikipedia.org/wiki/Browser_wars

Basic HTML Page

● The DOCTYPE declaration defines the document type
● The text between <html> and </html> describes the web

document
● The text between <head> and </head> contains meta-data

about the file as well as links to external resources
● The text between <body> and </body> describes the visible

page content

HTML Tags
HTML tags are keywords (tag names)
surrounded by angle brackets:
<tagname>Content</tagname>

● HTML tags normally come in pairs like <p> and </p>
● Self-closing or standalone tags have no closing tags

(
 <hr/>)
● The first tag in a pair is the opening tag, the second

tag is the closing tag
● The closing tag is written like the opening tag, but with

a slash before the tag name

HTML Attributes

● Attributes provide additional information about an
element

● Attributes are always specified in the start tag
● Attributes come in name/value pairs like: name="value"
● Tags may have multiple attributes

HTML Attributes

id and class are common

● id is used by Javascript to uniquely identify an element
to add functionality. No two elements should ever have
the same id in one document

● The class attribute is mostly used to apply a CSS style.
It can also be used by JavaScript to identify a group of
elements. Many elements can share the same class.

Heading Tags
Define headings with the <h1> to <h6> tags

Paragraph and line break tags

● Define paragraphs with the <p> tag. Each
paragraph element will typically be followed by a
double-space.

● Define single line breaks with the
 tag. It's
one of the tags that doesn't need an end tag.

Paragraph and line
break tags

<h1>My Heading</h1>
<p>
My first paragraph.
I can have line breaks in the code
but they will be ignored. There will be
extra lines before and after the paragraph.
</p>
<p>
This is a new paragraph.

It has manual line breaks.

The new lines are "single-spaced".
</p>

Text formatting

● or : Bolds text
● <i> or : Italicizes text

Note: These tags are "deprecated", which
means you're really supposed to use CSS
styles to comply with modern standards,
but these "old school" text formatting
tags are still pretty common.

Links

Links are defined with the <a> ("Anchor") tag

Images
Images are defined with the tag

Attributes
● src - Relative path to image file.
● alt - Specifies alternate text if image cannot be

displayed.
● width - width in pixels
● height - height in pixels

Only the src attribute is required.

Note: The image file must exist
independently of the page in the
location specified

Comments

Use <!-- and --> to insert comments in HTML.

Comments are not displayed by the browser, but they can help
document your HTML.

Unordered Lists (Usually "bullets")

Start an unordered list with the tag.
Each list item starts with the tag

Ordered Lists (Usually "numbers")

Start an ordered list with the tag. Each
list item starts with the tag

2 types of elements: Block vs Inline

BLOCK

Start and end with a new line

Examples:

● <h1>
● <p>
●
● <table>
● <div>

INLINE

Usually displayed without
line breaks

Examples:

●
● <td>
● <a>
●

The <div> element

● The <div> element is a block level element that can be
used as a container for other elements.

● The <div> element has no special meaning. It has no
required attributes, but style and class are common.

● Because it is a block level element, the browser will
display line breaks before and after it.

● When used together with CSS, the <div> element can be
used to style blocks of content.

A common use of <div> in PowerSchool

<!-- start of content and bounding box -->
<div class="box-round">
 more code inside here
</div>

The element

● The element is an inline element that can be used
as a container for text.

● The element has no special meaning. It has no
required attributes, but style and class are common.

● Unlike <div>, the element does not generate a line
break.

● When used together with CSS, the element can be
used to style parts of the text

The element

CSS
Cascading Style Sheets

Cascading Style Sheets (CSS)
Styles define how to display HTML elements

● Styles are achieved by defining CSS declarations.
● There are two parts to a CSS declaration:

○ Property - Identifies which feature will be styled
○ Value - Describes how the feature will be styled

● Separate the two parts with a colon {color:red}

CSS Declaration blocks

Declaration Blocks consist of multiple declarations
contained within curly braces. Each declaration is separated
by a semicolon.

Where does CSS go?

● External stylesheets
<link href="/images/css/screen.css" rel="stylesheet">

● Embedded in the <head> tag
<style>p {font-size:12px;}</style>

● Inline
<p style=“font-size:12px;”>Paragraph text</p>

* There are complex rules for which styling wins
out. Google “CSS Specificity.”

How does CSS know what to style?

● An inline style only applies to the element itself

● Otherwise HTML elements are matched through selectors
○ * matches all tags
○ p matches all paragraph <p> tags
○ div matches all <div> tags
○ .classname matches all elements with that class
○ Combinations: div.box-round

will only match <div> tags that have class="box-round"

CSS Selector Examples

h1 {
 font-size:180%;
 font-weight:bold;
 margin:25px 20px;
 line-height:1.5em
}

.intro {
 background-color: yellow;
}

Matches all <h1> elements

<h1>This is my header</h1>

Matches all elements with a class
of "intro"

<div class="intro">This div will
have a yellow background.</div>

Embedded vs External
● If you embed CSS in a page in the <head> area, it will

only apply to that page.

● External styles are written in a separate document and
can be linked to multiple HTML documents. This is a great
way to achieve consistency across an entire website

CSS Beginner Tip

● See the Documentation Reference Plugin or
W3Schools for more on CSS.

● CSS can be very daunting for the beginner.
● Start by applying the CSS classes already

available in PowerSchool.
○ Using existing PS CSS is good advice even for more

advanced users. It keeps your customizations looking
like other PS screens, and consistency is good for
your users.

Using PowerSchool CSS styling

The default style sheet is referenced on existing pages and
can be referenced in custom pages as follows.

Using PowerSchool CSS styling

<body>
<div id="container">

<div id="usercontext-bar" role="banner">Breadcrumbs</div>
<div id="content">

<div id="nav-main">
<div id="nav-main" role="navigation">

<h3>Functions</h3>
</div>

</div>
<div id="content-main">

<h1>Page Name</h1>
<div class="box-round">

<h2>Box Header</h2>
<p>Content</p>

</div>
</div>

</div>
</div>

</body>

https://jsfiddle.net/aplarsen/vtunbs8s/

https://jsfiddle.net/aplarsen/vtunbs8s/

Tables

Tables

● Best and worst part of HTML
● Should NOT be used for

layout of page sections
○ This used to be the preferred way

of design…in the late 1990s

● CSS has rendered this obsolete
● DO use <table> to display tabular data

Tables

● <table></table> defines a table
● <tr></tr> defines a table row
● <td></td> defines a table datum (cell)
● <th></th> defines a table header (cell)

Works mostly the same as a <td>, but applies styling to
make the headers stand out

● <thead>, <tbody>, and <tfoot> can be used to group
content, but are not necessary

Table styles in PowerSchool

See the UI examples or the Customization Reference plugin for
how to style different types of tables in PowerSchool.

● UI Examples
/admin/ui_examples/home.html

● Customization Reference Plugin
https://support.powerschool.com/exchange/view.action?download.id=772

https://support.powerschool.com/exchange/view.action?download.id=772

<table class="linkDescList">

Automatic zebra striping!

<table class="grid">

Gridlines!

<table class="tableToGrid">

Sortable columns!

<table class="linkDescList" data-pstablefilter="">

Lets users narrow down the table

Forms

Forms Intro

● Take inputs from users
● Send content to a receiving page
● Receiving page acts on content and displays

a result
○ PowerSchool does all of the action on the back end.
○ Receiving pages only need to display result

Form Template
<form action="/admin/changesrecorded.white.html" method="POST">

<table>
<tr>

<td>Input Label</td>
<td>

<input type="text" name="[students]first_name" value="" />
</td>

</tr>
</table>
<div class="button-row">

<input type="hidden" name="ac" value="prim">
~[submitbutton]

</div>
</form>

Form Template
<form action="/admin/changesrecorded.white.html" method="POST">

action

The page that will receive the form content
and be displayed when the form is submitted

Form Template
<form action="/admin/changesrecorded.white.html" method="POST">

method

● GET
○ Default
○ Converts all form variables into querystring and submits to address

bar
○ Limited in amount of content it can hold

● POST
○ Puts all variables into body and sends to receiving page
○ Much higher limit in amount of data

Input Names

Each form input should have a name attribute
<select name=“grade”>

<option selected value=“”>select a grade…</option>
<option value=“9”>Freshman</option>
<option value=“10”>Sophomore</option>
<option value=“11”>Junior</option>
<option value=“12”>Senior</option>

</select>

Selecting “Sophomore” and submitting the form via GET
would take the browser to:

receiving_page.html?grade=10

Form Inputs - Name
<input type="text" name="[students]first_name" value="" />

If you want the input to save to the database….

Form inputs for core fields:
<input type="text" name="[Table_Name]Field_Name" value=""/>

● Text Inputs - value="" is required to ensure that the current value will
be retrieved from the database to display for existing records

● Checkboxes - use value="1" for boolean (true/false) fields

Form inputs for database extension fields (one-to-one)
<input type="text" name="[PrimaryTable.ExtensionGroupName]Field_Name"
value=""/>

Input Types

● <input type="text">: one-line text box
● <input type="password">: one-line text box that hides content
● <input type="checkbox">: on/off seletion
● <input type="radio">: like a checkbox, but only one can be selected
● <input type="button">: button that can have an action when clicked
● <input type="submit">: button that submits form

○ ~[submitbutton] is PowerSchool shortcut
● <input type="hidden">: displays nothing, passes parameter
● <select></select>: drop-down box

○ <option></option>: each line in a drop-down box
● <textarea></textarea>: Multi-line text box

AC values <div class="button-row">
<input type="hidden" name="ac" value="prim">
~[submitbutton]

</div>

PowerSchool forms must have an action (ac) value to
successfully modify data. The required action depends on
the portal being customized.

Role of FRN = "File Reference Number"
FRNs are used to indicate to PowerSchool the current
record which must be accessed from the database.

addresses.html?frn=0014321

Database

Table: 001
DCID: 4321

FRN and RN
● ~(frn) is the PS HTML tag used to retrieve or set the

current record.
● ~(rn) is the PS HTML tag used to retrieve the current

unique id (dcid).
● FRNs are often found in HTML links.

The above link will navigate the user to the demographics page and retrieve
data for a student in the database with a dcid of 332.

● Once on this page, the use of the ~(frn) tag would result in a return of
the value 001332.

● The use of the ~(rn) tag would result in a return of the value 332.

Using submitted values

The receiving page can use the values sent with the form

● PowerSchool tag: ~(gpv.parameter_name)
○ “Get Parameter Value”
○ A parameter is something that is passed from one

page/function/procedure/program to another
○ Works with both GET and POST

● Example:
○ Code: <p>You selected grade: ~(gpv.grade)</p>
○ Output: You selected grade: 10

● GPV can be used to display a selection, search the
database, or decide page control logic

Sending values in links

Values can also be sent to the receiving page via links.

● Parameters passed via the URL are visible in a page's
address. They are listed following the page name,
preceded by a question mark, and separated by ampersands.

myPsServer/admin/somePage.html?gender=F&grade_level=12

If the above were the current address of a page in PowerSchool, the
parameters could be accessed as follows.
~(gpv.gender) Result=F
~(gpv.grade_level) Result=12

Example of sending a gpv to a custom report

<form action="gradelevelroster2.html" method="GET">
<table class="linkDescList">
 <tr>
 <th>Option</th>
 <th>Value</th>
 </tr>
 <tr>
 <td>Grade Level</td>
 <td>
 <select name="grade_level">
 <option value=""><option value="-2">PK3<option
value="-1">PK4<option
value="0">K<option>1<option>2<option>3<option>4<opti
on>5<option>6<option>7<option>8<option>9<option>10<o
ption>11<option>12
 </select>
 </td>
 </tr>
</table>
<div class="button-row">~[submitbutton]</div>
</form>

Example of receiving a gpv in a custom report (grade_level=3)

<table>
 <tr><th>Grade</th><th>Last</th><th>First</th></tr>
 ~[tlist_sql;
 select grade_level, last_name, first_name
 from students
 where
 ~(curschoolid) in (0, schoolid)
 and enroll_status = 0
 and grade_level = ~(gpv.grade_level)
 order by lastfirst
 ;]
 <tr>
 <td>~(grade_level)</td>
 <td>~(last_name)</td>
 <td>~(first_name)</td>
 </tr>
 [/tlist_sql]
</table>

https://.../gradelevelroster2.html?grade_level=3&btnSubmit=

PSHTML

PSHTML

● PowerSchool's special brand of HTML.
● Add special codes and commands to interact with your

server and data.
● Begin with a tilde character (~) and contain commands

enclosed in parenthesis or square brackets.
○ ~(curyearid)
○ ~[x:username]

● Prior to delivering content to a browser, the PowerSchool
server replaces PS HTML with the appropriate traditional
HTML content.

PSHTML

Tip: Learn by inspecting PowerSchool pages with
htmlr or htmlt

https://yourserverURL/admin/students/parentsguardian.html?frn=0012

Render everything EXCEPT for PSHTML tags
https://yourserverURL/admin/students/parentsguardian.htmlr

View completely unrendered (server-side) code
https://yourserverURL/admin/students/parentsguardian.html?t

Tip: Student pages are in
"frames". To use these special
extensions right-click
(ctrl-click) on the link to them
and "Open link in new tab"

https://yourserverURL/admin/students/parentsguardian.html?frn=0012

https://yourserverURL/admin/students/parentsguardian.htmlr

https://yourserverURL/admin/students/parentsguardian.htmlt

Where to learn more

● PSHTML Developer site
https://support.powerschool.com/developer/

● Eric Schaitel's Customization Documentation
https://support.powerschool.com/exchange/view.action?download.id=772

● The PowerSchool User Community
○ PowerSource Forum: https://support.powerschool.com/forums/main.action
○ PSUG Group: https://groups.io/g/PSUG

https://support.powerschool.com/developer/
https://support.powerschool.com/exchange/view.action?download.id=772
https://support.powerschool.com/forums/main.action
https://groups.io/g/PSUG

Common PSHTML tags

Fields

Most fields can be displayed with ~([table]field_name)

~([students]last_name)
~([students]home_room)

~([01]last_name) - The table number can also be used
But do you really want to remember numbers?

Database extensions:
~([PrimaryTable.ExtensionGroupName]field_name)

~([Students.U_Students_Extension]DistrictID)

Data Access Tags (DAT)

Type of PSHTML that provide simple access to data on:

● HTML Pages, Object Reports, Form Letters,
Quick Exports, List Students, Report Cards

Access to:

● Students fields, GPA, Honor Roll, Attendance, Scheduling

DAT Supplement: https://support.powerschool.com/d/55742
These are a full session topic on their own

https://support.powerschool.com/d/55742

DAT Examples

● ~(*gpa method="Weighted" Grade="9,10,11,12")
● ~(tests;name=ACT;score=Composite;which=best;type=num;

result=value;format=##0)
● ~(*period_info;1(A);course_name)
● ~(per.att;1(A);A;Q2)
● ~(*DABS)
● ~(*honorroll method="High Honors" term="S1")

Wildcards

● Wildcards contain reusable
content that appears in the
same format in several PS
pages.

● Wildcard content is stored in
the wildcards folder in the PS
web root.

● Headers, footers, and
navigation code is commonly
kept in wildcard files.

Wildcard Syntax

● Wildcard files all have an extension of .txt
● The wildcard file name specified in the tag must contain

the name of the file without the extension name.

~[wc:admin_header_frame]

Conditional Logic (IF tag)

~[if{#identifier}.{expression}]
{true_render}

[else]
{false_render}

[/if]

● {#identifier} - Optional. Used when
nesting multiple IF tags. Prefixed
with a number sign(#)

● {expression} - Required. A comparison
expression to test for a true/false
result

● {true_render} - Optional. Rendered if
the expression returns true

● {false_render} - Optional. Rendered
if the expression returns false.

Using with ~(gpv)

~[if] tags are often used in conjunction with ~(gpv.xx) tags

For example, a custom report might have a parameter passed
named 'gender'. This parameter could be accessed using the
following tag: ~(gpv.gender)

Special IF tags

~[if.district.office]
~[if.is.a.school]
~[if.mac]
~[if.win]
~[if.isstudent]
~[if.isguardian]

Example

~[if#distCheck.district.office]
~[if#winCheck.win]

District office on Windows
[else#winCheck]

District office on Mac
[/if#winCheck]

[else#distCheck]
~[if#winCheck2.win]

~(schoolname) on Windows
[else#winCheck2]

~(schoolname) on Mac
[/if#winCheck2]

[/if#distCheck]

"District office on Mac"

Text Tags

Text tags retrieve text from PowerSchool's localization
definitions.

Localization allows users to change the language used in a
PowerSchool implementation, or translate individual words
and phrases.

~[text:string_key_name]

Use text tags for customization?

Tips

● If no need to translate, just use regular labels
○ Example: <title>Grade Level Roster</title>

● You can copy EXISTING text tags in PowerSchool
(Caution: sometimes PS changes text keys)

● You can CREATE your own keys in the Custom Page Manager

Creating your own text keys

1. Highlight
your text

2. Choose
"Extract to
Keys"

1

2

Creating your own text keys

1. Highlight
your text

2. Choose
"Extract to
Keys"

3. New key
automatically
created 1

2

3

Error - "String key was not found!"
This error is fairly common.

- You customize a page
- PowerSchool updates the page

and changes the text key.
- Your customization is now

referencing a text key that
no longer exists.

Solution

- Don't use stock text keys
- Use page fragments to customize
- Update your customization to refer to the new key

Error - "String key was not found!"

~[text:psx.html.admin_students.generaldemographics.street]

~[text:psx.html.admin_students.generaldemographics.street_aptsuite]

FIXED!

Tlist_SQL

A way to embed an SQL Query into your custom pages

Separate SQL class!

The basics

~[tlist_sql;
SQL Query goes here;]
Row Template goes here

[/tlist_sql]

<table class="linkDescList">
<thead>

<tr>
<th>Name</th>
<th>School Number</th>
<th>Principal</th>
<th>Address</th>

</tr>
</thead>
<tbody>

~[tlist_sql;
SELECT name, school_number, principal, address
FROM schools
ORDER BY sortorder

;]
<tr>

<td>~(name)</td>
<td>~(school_number)</td>
<td>~(principal)</td>
<td>~(address)</td>

</tr>
[/tlist_sql]

</tbody>
</table>

Tlist_SQL
1. The code in the

Row Template will
be repeated for
each record
returned by the
query

2. Columns in each
record are
referenced using
~(column_name)

3. The columns in the
Row Template must
be in the same
order as the query

~[tlist_sql;
SELECT name, school_number, principal, address
FROM schools
ORDER BY sortorder

;]
<tr>

<td>~(name)</td>
<td>~(school_number)</td>
<td>~(principal)</td>
<td>~(address)</td>

</tr>
[/tlist_sql]

Tlist_SQLTlist_SQL

● Develop and test queries in a querying tool. Then paste
the query into your tlist_sql tags.

● PowerSchool will not respond with an error message if the
query has an error; there simply won't be any data
rendered.

○ However, tlist_sql errors will appear in the PowerSchool log (System
> System Logs > System Log > View Current System Log File).

● Tlist_sql is not limited to generating table rows. It can
also be used to create options for <select> inputs, or
any solution that would require repeated code for each
result from a query.

Tips for developing Tlist_SQL

Final Tips

● Open existing PowerSchool pages to see how
they are constructed

● Use the PS Templates in CPM
● Refer to UI Examples
● Download plugins from PowerSource Exchange
● Be brave!

Credits

Adam Larsen/Aurora Educational Technology

● Past presenter at PSUG ME
https://auroraedtech.com/

Eric Schaitel/Marcia Brenner Associates

● (Content adapted from Customization Reference Plugin)
https://support.powerschool.com/exchange/view.action?download.id=772

https://auroraedtech.com/
https://support.powerschool.com/exchange/view.action?download.id=772

